
Python For Loops

June 3, 2024

0.1 Python For Loops
Dr.Labeed Al-Saad

A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary, a set, or
a string).

This is less like the for keyword in other programming languages, and works more like an iterator
method as found in other object-orientated programming languages.

With the for loop we can execute a set of statements, once for each item in a list, tuple, set etc.

**The for loop does not require an indexing variable to set beforehand.

Example:

Print each fruit in a fruit list:

[1]: fruits = ["apple", "banana", "cherry"]
for x in fruits:

print(x)

apple
banana
cherry

0.2 Looping Through a String
Even strings are iterable objects, they contain a sequence of characters:

Example:

Loop through the letters in the word “banana”:

[2]: for x in "banana":
print(x)

b
a
n
a
n
a

1

0.3 The break Statement
With the break statement we can stop the loop before it has looped through all the items:

Example:

Exit the loop when x is “banana”:

[3]: fruits = ["apple", "banana", "cherry"]
for x in fruits:

print(x)
if x == "banana":

break

apple
banana

Example:

Exit the loop when x is “banana”, but this time the break comes before the print:

[4]: fruits = ["apple", "banana", "cherry"]
for x in fruits:

if x == "banana":
break

print(x)

apple

0.4 The continue Statement
With the continue statement we can stop the current iteration of the loop, and continue with the
next:

Example:

Do not print banana:

[5]: fruits = ["apple", "banana", "cherry"]
for x in fruits:

if x == "banana":
continue

print(x)

apple
cherry

0.5 The range() Function
To loop through a set of code a specified number of times, we can use the range() function, The
range() function returns a sequence of numbers, starting from 0 by default, and increments by 1
(by default), and ends at a specified number.

Example:

2

Using the range() function:

[6]: for x in range(6):
print(x)

0
1
2
3
4
5

**Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range() function defaults to 0 as a starting value, however it is possible to specify the starting
value by adding a parameter: range(2, 6), which means values from 2 to 6 (but not including 6):

Example:

Using the start parameter:

[7]: for x in range(2, 6):
print(x)

2
3
4
5

The range() function defaults to increment the sequence by 1, however it is possible to specify the
increment value by adding a third parameter: range(2, 30, 3):

Example:

Increment the sequence with 3 (default is 1):

[8]: for x in range(2, 30, 3):
print(x)

2
5
8
11
14
17
20
23
26
29

0.6 Else in For Loop
The else keyword in a for loop specifies a block of code to be executed when the loop is finished:

3

Example:

Print all numbers from 0 to 5, and print a message when the loop has ended:

[9]: for x in range(6):
print(x)

else:
print("Finally finished!")

0
1
2
3
4
5
Finally finished!

**Note: The else block will NOT be executed if the loop is stopped by a break statement.

Example:

Break the loop when x is 3, and see what happens with the else block:

[10]: for x in range(6):
if x == 3: break
print(x)

else:
print("Finally finished!")

0
1
2

0.7 Nested Loops
A nested loop is a loop inside a loop.

The “inner loop” will be executed one time for each iteration of the “outer loop”:

Example:

Print each adjective for every fruit:

[11]: adj = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]

for x in adj:
for y in fruits:

print(x, y)

red apple
red banana
red cherry

4

big apple
big banana
big cherry
tasty apple
tasty banana
tasty cherry

0.8 The pass Statement
for loops cannot be empty, but if you for some reason have a for loop with no content, put in the
pass statement to avoid getting an error.

Example:

[12]: for x in [0, 1, 2]:
pass

5

	Python For Loops
	Looping Through a String
	The break Statement
	The continue Statement
	The range() Function
	Else in For Loop
	Nested Loops
	The pass Statement

